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LETTER TO THE EDITOR 

The theory of coupled differential equations in supersymmetric 
quantum mechanics 

Cao Xuan Chuant 
Observatoire de Nice, PB 135, Nice, France 

Received 21 August 1990 

Abstract. There is a close relationship between the theory of coupled differential equations 
and supersymmetric quantum mechanics. We set up the bridge connecting these fields with 
two theorems concerning both the coupling and non-coupling cases. 

Since the introduction of the concept of shape-invariant potentials (SIP) and its 
connection with the factorization approach of the Schrodinger equation (Gedenshtein 
1983, Infeld and Hull 1951) there has been widespread interest in various aspects of 
SUSY. During the last two years, a number of papers have focused on the bound states 
problem in dealing either with the quest for families of exactly solvable potentials and 
their energy spectrum or the determination of the excited states wavefunction by 
repeated use of the ‘ladder operator’ technique (see, for example, Cooper et a1 1989, 
Stahlhofer and Bleuler 1989, Dutt et a1 1988, Keung et al 1989, Montemayor and 
Salem 1989, Fernandez et al 1989 and a more recent review by Lahiri et a1 1990). 

There is, on the other hand, another aspect which also deserves some more attention, 
nameiy the SUSY formulation in the ‘continuum’ (E > 0 or scattering states) of the 
Schrodinger equation (see, for instance, Sukumar 1987, Amado et al 1988, Cooper 
et a1 1988, Khare and Sukhatme 1988). 

In this letter we shall mainly discuss this second aspect by noting that the scattering 
problem within the two-state approximation is described by a system of two coupled 
differential equations which bear a strikingly close similarity to the mathematical 
formulation of SUSY in the N = Z case. To simplify, we continue to keep the previous 
notations (Cao 1981) in writing the system of CDE as: 

in which P = d2/dx2,A(x)(i = Z, 2), B(x) can be any analytic functions of x. On the 
other hand, in supersymmetry we are concerned with a system of two coupled differen- 
tial equations of first order: 

with R2 = ki - a, E2 is the energy (eigenvalue), a is a constant which may depend on 
a parameter, 41, 42 are the bosonic and fermionic components, A* are the ‘ladder’ 
operators defined by: 

rp+”fl(x)I41= W ) 4 ,  [ P + h b ) 1 4 2  = W ) 4 ,  (1) 

A++, = 21’2k42 = 21’2E4, (2) 

A*= *-+ d U ’ ( X )  

dx 
u’(x) = du(x)/dx, u ( x )  is the superpotential, ki incident energy. 

t Permanent address: 01 Parvis du Breuil, 92160, Antony, France. 

(3)  

0305-4470/90/231217+06%03.50 @ 1990 1OP Publishing Ltd L1217 



L1218 Letter to the Editor 

The Hamiltonian is now a 2 x 2 diagonal matrix H( H,, H-) with 

[ H , - K 2 ] ~ , , , = 0 .  ( 5 )  

For the case where B(x) = 0 (no coupling), the relationship mentioned above can 
be formulated by the following theorem. 

Theorem 1. Let the analytical structure of f ; ( x ) ,  i = 1, 2 be such that 

J ( X ) =  k 2 - h i ( x )  ( 6 )  

hi(x) satisfying the following condition ( k2 = 2 E 2 ) :  

[ hl(  x )  + h,( x ) ] ” ~  = 2-’ j2  (7 )  

then, 

of supersymmetry; 

of 41, 42. 

( a )  the solutions 4,, 42 of the Schrodinger equations (1) are partners in the sense 

( b )  their differentiation +;, 4; can be expressed by a ‘recurrence relation’ in terms 

Proofi ( a )  When B ( x ) = O ,  we may always write (1) as: 

d2 1 -+ k2 -- ( h ,  + h,) [ dx2 2 

where Af = f l  -f2. From (4), ( 5 ) ,  (7)  we have 
1 f( h ,  + h,)  = U‘* dfl - f 2 )  = vtt* 

( b )  As 4,, 4, are partners, from (2) we see that: 

As an example, we shall consider the cases of one and two parameters. 

One parameter. Let 

h i ( x )  = ri - s i [  f ( x ) ] ”  (11) 

ri ,  si are constants and may depend on a parameter, f ( x )  is the unknown function. 
We consider for instance the following cases: 
1. k # 0, n = 1, ri = 0, s, = I ( / +  l ) ,  s2 = ( I +  l ) (I+2);  
2. k = 0, n = 2, rl = $, r2 = - a ,  s1 = s2 = t ;  
3 .  k = 0 ,  n = 1, r l =  r 2 =  a’, s, = -a(a - l ) ,  s2=-a(a+1) .  

It can be verified that using (7) ,  the function f ( x )  must be solution of the following 
corresponding differential equations: 

f ‘  
f ’ =  1 Tf = -2 

f ’f - 3 / 2  = 1 



Letter to the Editor L1219 

with solutions of the form: 

f = x 2  f - x  f = sech2 x. 

In case (1) the components 4 ~ ~ )  are simply the Bessel functions &Jl+l(kx), 
f i J 1 + 3 , 2 (  kx) with well known recurrence relations as can also be checked using (10). 
Case (2) is the usual oscillator problem while case (3) corresponds to the Posch-Teller 
potential (u’(x) = a tanh x) with eigenvalue -a2/2.  

Two parameters. Let 

J 1 + f 2  b 
u’(x) = c--- 

f f  
with f ’= so that f =  sinh x. From (7) we have (c and b are parameters): 

C 2  

2 2sinh2x h1,2(x) =-+ [c(c* 1)+ b2-  b(2c* 1) cosh x] 

with eigenvalue k2 - c2/2. 
The condition (7) which ensures the existence of a superpotential is valid in all 

cases. If, on the other hand, shape invariance is assumed, the functionsj(x) must also 
be related by another additional relation first pointed out by Gedenshtein (1983) 

fl(P0, x) =fi(p1, X I +  C(P1) 

( p 0  = parameter, p1 = g ( p o ) ) .  
For k = 0, we have indeed verified that (7) does incorporate all known exactly 

solvable shape-invariant potentials (Dutt et a1 1988). The question of whether it may 
also include some special type of exactly solvable, but non-shape, invariant potentials 
is under investigation. 

For further application, it will be interesting to add a ‘Coulomb’ term in case (1) 
so that 

1 (1+1)(1+2) h2(X) = --+ 1 1(1+1) 
h,(x) = --+- 

x x2 X X2 

then 

1+1 1 0’(x)=----- 
x 2(1+1)’ 

If we now include explicitly the charge Z in this formulation, the resulting couple 
(H+ , H - )  defined by Roy (1990) 

d2 22+(1+1)(1+2) Z2 +- (13) H- = ---_ d2 2 2  1(1+1) Z2 +- H ----__- 
+ -  dx2 x x2 (1+1)2 dx2 x X2 (1+1)2 

are SUSY partners according to (7). However, the alternative couple (w+, R- derived 
from the ‘ladder operator’ technique (N: principal quantum number 

d2 2 2  1 ( 1 + 1 )  Z2 
dx2 x x N 2  dx2 x 

fl+ = --_- +7+- 

cannot, strictly speaking, be regarded as SUSY partners because of the non-validity of 
condition (7) (or equivalently non-existence of the appropriate superpotential). 
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The coupling case (4). When B(x) # 0, the original representation (4, , d2) become 
inadequate and we shall need a new representation ($,, c $ ~ )  defined by 

- ( l + a )  1 - a  
i = T ( a )  = 

From the theorem of separation (Cao 1981), we also know that in the representation 
6, the equations are completely decoupled iff , ,  f 2  and B ( x )  are such that B ( x ) / A f =  a 
where a = constant and 

a = - 2 a + m  m = - .  
Its connection with supersymmetry can be formulated by a second theorem. 

Theorem 2. Consider system (1) and assume that the conditions (7) and (16) are 
simultaneously valid. Then: 

( a )  the components $,, 62 are not partners; 
( b )  under certain conditions, it is possible to_ gqerate  two families of superpoten- 

tials such that &, 6, have their own partners 6, ~ 5 ~ .  
ProoJ: ( a )  The separated equations can be written as: 

Consider now the LHS of (17) and let $io), 6;’) be solutions of this homogeneous 
differential equation. From theorem 1 we already know that &”, 6:”’ are partners. 
The existence of the RHS term ( m  > I) will invalidate condition (7) so the two com- 
ponents 6, , 4, cannot generally be supersymmetric partners except however for some 
very special cases. Note also that the inclusion of a coupling can also be regarded as 
equivalent to a rotation of an angle cp (tan cp = ( 1  - a ) / (  1 + a ) )  in the abstract space 
(61,621 (Cao 1988). 

( b )  Let A = 5” (f, -h) dx and let a matrix 0(x) = ( 0,, a,) be defined by 

0; ,2=*(+A+$)  (18) 
$(x) being for the moment arbitrary. 

From (17) we may now subject $(x) to the condition: 

iA2*$mA’= ($A+$)’ i ($A’+$’)  (19) 
so that it can be determined by the Ricatti equation: 

* $’+A$+ t,b2ri(m - 1)A’= 0 

with two solutions corresponding to the * sign. 
In order to solve (20) we must have recourse to standard methods which consist 

of two successive transformations. First we set $i = ei(d/dx) log pi  and secondly 
gi  = c i ( x )  exp[fq 5” A dx], ei = * l ,  i = 1,2.  

It can be verified that ci(x) are solutions of the following equations: 

[g-i(A2+2mAf) dx2 4 (A2 - 2( m - 2)A’) 

From (18) we see that the two components of the superpotential are simply 0; = c ; /  c , ,  
0; = c;/ c2 and the conditions mentioned above concern the existence of solutions of 
these equations, solutions which are determined up to a constant of integration. 0 
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We note that these equations become identical if m = 1 (no coupling). Asymptoti- 
cally the quantity A(x) is generally a constant. For instance in the Posch-Teller case 
A(x) = 2 a  tanh x so that A(m) = 2a. The asymptotic solutions are ci(oo) = exp(*A). If 
we assign the + (-) signs to cl ( c 2 )  then the superpotential 8' is asymptotically reduced 
to a constant diagonal matrix 

o'(m)=(a 0 -a O ). 
This is precisely the result obtained by Amado et al (1988) using another approach 
which is valid only for the case of threshold difference (non-resonance) while in the 
present one the resonance case is taken into account. 

The appropriate coupling functions B(x) can be determined from the condition 
B(x)/Af(x) = cte. For instance in the four cases (1)-(4) above the coupling functions 
are respectively (Bo= cte): B(x) = B(x) = cte, B(x) = Bo (cosh2 x)-', B(x) = Bo 
(sinh2 x)-'c - b cosh x. The non-resonance case can also be dealt with by use of the 
technique of auxiliary parameters (Cao 1982, 1988). 

The following example can be regarded as a pedagogical hint for the use of the 
last theorem because of its relative simplicity. Consider in fact the case of Bessel 
functions discussed above (one parameter, case 1) .  We have for this case A = 'yx-', 
y = 2( I +  1) so that it would be more appropriate to solve (19) directly with a solution 
of the form + = aix-', i = 1, 2 where 

It is possible in this special case to ascribe to the quantities ai a precise physical 
meaning. Indeed, if there is no coupling (m = l ) ,  a = 0 and the asymptotic forms of 
by', c,@) are sin(kx - h / 2 )  and sin(kx - ( I +  l )a/2) .  In the presence of a coupling 
(m > 1 )  they are sin(kx - ( I +  a,).rr/2) = 6' and sin(& - ( I +  1 + a2).rr/2) = 6,. Therefore 
the quantities gI, = al.rr/2 and g2, = a2.rr/2 can be considered as the eigenphase shift 
in the (6) repreentation (Cao 19841. From (10) we also see that their partners 
are respectively El, = (al + 1).rr/2 and 6;,2 = (a2+ l).rr/2. 

As the system of differential equations is decoupled in the (6) representation, the 
corresponding matrix (S=exp(i8) is a diagonal matrix 

The original S matrix in the (4) representation is simply: 

s = T;,)ST,,). 

Physically, this example can be associated with the 'optical resonance' transition 
In, I)+ In, I*  1) in e - H scattering with the Lane-Lin model (1964) in which, at first 
approximation, the Coulomb effect is neglected and only the effect of a dipole coupling 
is taken into account in the frame of a two-state approximation. 

It is also possible to generalize the Lane-Lin model by incorporating the Coulomb 
term in (17). We briefly present here some results which can be easily verified. For 
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instance the two components of the matrix s are now: 

(23) 
r( i + 2 + a2 - (2ik2)-'] 

2,2 - r( I + 2 + a,+ (2ik2)-ll 
s -  r [ l + i + a ,  -(2ikl)- '] 

-r[l+ 1 + a ,  + (2ik,)-'] 
s -  

in which k: = k2 - [4( I +  1 + a,)']-'; k: = k2 - [4( I + 1 + a2)2]-1. They are related to their 
corresponding partners by: 

ik2- W, = - ik2- W, - 
s 2 . 2  = - s -- 

I k2 + W, ",' 1.1 - ik, + W, 'l,' 

where 
1 1 
1 1 W ,  = w, = 

2(1+ 1 + a , )  2( I + 1 + a2) * 

To summarize, we may conclude that the above discussion clearly suggests a close 
formal relationship between the basic ideas of supersymmetric quantum mechanics on 
one hand and the theory of coupled differential equations on the other. Condition (7) 
in this sense, does play an essential role in this connection because it ensures the 
existence of the appropriate superpotential. The possibility of including a coupling in 
the theory may also open new perspectives in widening the range of future investiga- 
tions. 
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